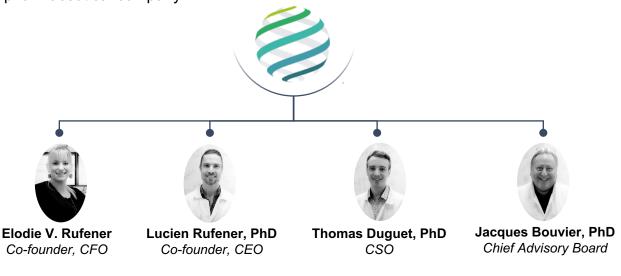


2022 CATALOGUE

Short version: 2.4 March 2023

Table of content

Who are we?	3
Our Missions	4
INVENesis (Switzerland) and INVENesis France	6
Our labs	7
Main technical equipments	8
Assays:	
Ectoparasites and vectorsEndoparasitesModel organisms	9 10 10
- Electrophysiology- Enzymatic assays	11 11
Assay throughput	12
Screening flowcharts	13
List of receptors	14
Contacts	16
References	17


"Every brilliant experiment, like every great work of art, starts with an act of imagination."

Jonah Lehrer

Who are we?

INVENesis is led by a team of dedicated scientists with decades of experience in industrial R&D and a track record of successful drug discovery in a large pharmaceutical company.

Stéphane Wohlhauser Laboratory technician Assays and parasites breeding

Anouk Sarr Laboratory technician Molecular biology Electrophysiology

Yves Desaules
Laboratory technician
Automated liquid handling

Gautier Pizzolon
Laboratory technician
Junior scientist

Coralie Belgrano
Laboratory technician

Junior scientist

Kevin Shoetan Laboratory technician Apprentice

INVENesis is also present outside Switzerland:

Japan consulting

Ken Irie, PhD
External consultant

Our missions

INVENesis is a **one stop shop** to study the effect of active ingredients on individual targets, organs and whole organisms. This catalogue presents the list of validated assays for testing small molecules and natural extracts (e.g. peak correlation from HPLC extracts), many of them being compatible with **HTS campaigns and supported by automatized processes**. We propose assays on **nematodes**, **insects**, **acari**, **sea lice**, **zebrafishes** as well as **enzymatic** and **electrophysiological** assays on **Xenopus laevis oocytes** (functional assays on reconstituted ion-channels and transporters from invertebrates and vertebrates).

• Organism-based assays: their key advantage rely on the measurement of phenotypes independently of molecular target assumptions. We developed a whole pipeline of assays to allow high-throughput with high value assays for hit identification, lead optimization as well as resistance evaluation. Active compounds in organism-based assays have not only to act on their targets but also have to cross biological barriers, resist metabolization and reach one or more targets causing an effect at the whole - organism level.

- Electrophysiology assays: represent our second main domain of activity. The Xenopus oocyte expression system allows to express functional ion-channels in the membrane of individual cells and measure their physiological function. We measure the effect of compounds on ligand-gated ion-channels, voltage-gated ion-channels, GPCRs and transporters. Oocytes are injected with cDNA or cRNA encoding the receptor of interest using an automated injection platform (Roboinject). The effect of compounds on the heterologously expressed channels are recorded using an automated two electrodes voltage-clamp automate (HiClamp, Multichannelsystem). This system does not require months of cell culture: we can inject on a weekly basis and start measurements after 2-3 days of expression. We process automated protocols to detect agonism, antagonism, positive and negative modulators as well as silent agonists. Compounds can be pre-applied or coapplied with the natural agonist or applied alone. As the oocyte is moved across wells, this method is non-destructive, and measurements of other cells can be performed in a unique sample. We can also measure the electrophysiological response of sensory organs in mosquitoes and ticks.
- Our confidentiality commitment: to ensure a total confidentiality to our customers, we do anonymize their company name as well as each compounds we receive. In addition, the entire billing process is kept in house and managed directly by our CFO (Elodie Valazza Rufener) allowing a fast and reliable accounting.

INVENesis (Switzerland)

Established in St-Blaise on the Neuchâtel lake shore, INVENesis in Switzerland beneficiates from brand new state of the art laboratories with a total surface of 370m² (including 100m² of BSL2 labs). INVENesis in Switzerland is in charge of performing all ectoparasite and electrophysiology based assays. The company's headquarters are located there.

INVENesis France

Located on the INRAE research center in Nouzilly (France), our sister company INVENesis France takes advantage of both a facilitated access to endoparasitic species of veterinary importance and of years of collaboration with top level scientists in parasitology. INVENesis France is in charge of performing all our endoparasite-based assays and our french customers can benefit from the "Crédit impôt recherche", a fiscal-based cost reduction initiative.

Our labs

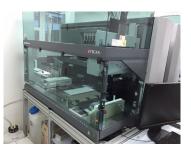
BSL1 lab space:

- Bacteriology
- Molecular biology
- Electrophysiology

Automatized pipetting platform

BSL2 lab space:

- Parasite breeding
- Assay recording
- R&D

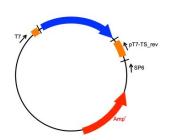


Main technical equipments

Automatized liquid handling

Chemical storage cabinets

TECAN 8 tips (serial dilutions)



TECAN 96 / 384 tips (test plate prep)

Liconic - KIWI (hit picking and compound storage)

Electrophysiology platform

Molecular biology
(DNA / RNA / protein equipment)

Roboinject (X. laevis oocyte cRNA injection)

HiClamp (X. laevis oocyte TEVC)

Other technical platforms

PCR / qPCR (Roche Lightcycler® 480 II)

Microscopy (Leica DMI6000B)

3D-printing (R&D)

- Incubators
- Centrifuges
- Safety cabinets
- Fume hoods
- -80°C freezers

BSL1 / BSL2 (standard equipment)

Ectoparasites / vectors

INV-T-009: Flea oral Oral INV-T-012: Blowfly adult oral INV-T-020: Tick adult oral NEW INV-T-010: Flea tarsal • INV-T-017: Tick egg-to-larvae tarsal • INV-T-018: Tick nymph tarsal • INV-T-019: Tick adult tarsal **Tarsal** • INV-T-033: Mosquito adult contact INV-T-039: Whitefly adult contact INV-T-042: Tick larvae tarsal NEW • INV-T-022: Tick larvae repellent • INV-T-021: Tick nymph vertical repellent • INV-T-029: Tick adult vertical repellent Repellency • INV-T-025: Mosquito adult repellent (1 warm body) • INV-T-030: Mosquito adult repellent (2 warm bodies) INV-T-040: Whitefly adult repellent NEW INV-T-043: Flea adult repellent NEW INV-T-011: Blowfly egg-to-L3 development **Development** INV-T-027: Flea development **INV-T-016**: Sea lice copepodites immersion Immersion INV-T-028: Tick adult immersion **INV-T-032**: Dust acarian mixed population Sterilization INV-T-035: Flea oral development NEW

Endoparasites

Development

INV-T-005: Gastrointestinal nematodes larval development (egg to L₃)

Immersion

- INV-T-004: Fasciola hepatica adult immersion
- **INV-T-006**: Gastrointestinal nematodes L₃ immersion
- INV-T-031: Migration trap assay (MTA)
- INV-T-041: Gastrointestinal nematodes adult immersion NEW

Model organisms

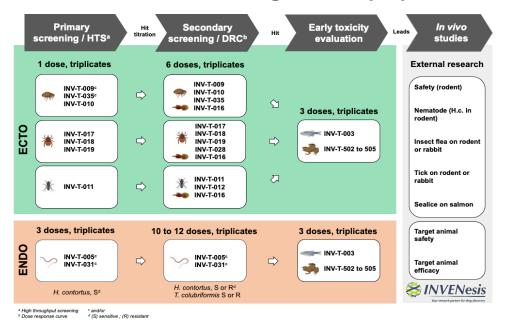
Development

- INV-T-001: Caenorhabditis elegans development (egg
- INV-T-003: Zebrafish development (egg to 72h embryo)

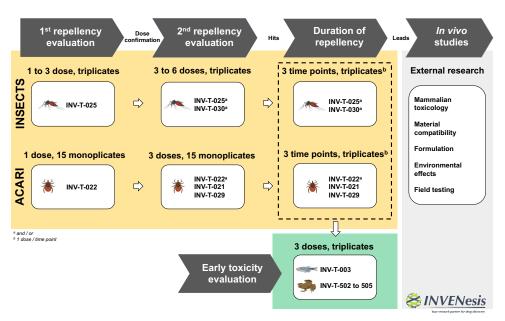
Electrophysiology

- INV-T-502: Xenopus oocytes, agonist protocol
- INV-T-503: Xenopus oocytes, antagonist protocol
- INV-T-504: Xenopus oocytes, PAM or NAM protocol
- INV-T-505: Xenopus oocytes, 123 protocol
- INV-T-506: Xenopus oocytes, IVC protocol
- INV-T-507: Xenopus oocytes, custom protocol

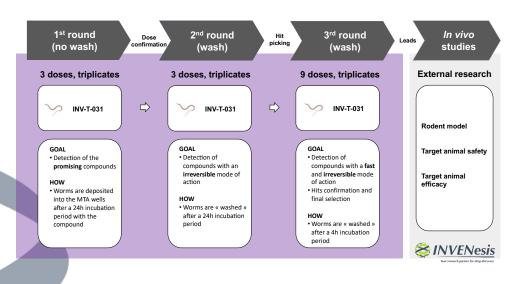
Enzymatic assays



- INV-T-023: Microtubulin polymerization
- INV-T-034: Acetylcholine esterase inhibition


Assay throughput

Assay	Test ID	Rep/DTP	Compound (mg)	Max datapoint / year	Assay throughput	Price discount (HTS)
Flea oral *	INV-T-009	3	< 2	32'000	+++	++++
Blowfly adult oral	INV-T-012	3	< 2	Project-based	+	++
Tick adult oral	INV-T-020	2	< 15	160	+	+
Flea tarsal *	INV-T-010	3	< 2	32'000	+++	++++
Tick egg-to-larvae tarsal	INV-T-017	3	< 2	> 100'000	++++	++++
Tick larvae tarsal	INV-T-042	3	< 2	> 100'000	++++	++++
Tick nymph tarsal	INV-T-018	3	< 2	32'000	+++	++
Tick adult tarsal	INV-T-019	3	< 2	32'000	+++	+
Mosquito adult contact	INV-T-033	3	< 15	Project-based	+	+
Whitefly adult contact	INV-T-039	3	< 15	Project-based	+	+
Tick larvae repellent	INV-T-022	3	< 2	Project-based	++	++
Tick nymph vertical repellent	INV-T-021	3	< 15	Project-based	+	+
Tick adult vertical repellent	INV-T-029	3	< 15	Project-based	+	+
Mosquito adult repellent 1 *	INV-T-025	3	< 2	Project-based	+	+
Mosquito adult repellent 2	INV-T-030	3	< 2	Project-based	+	+
Whitefly adult repellent	INV-T-040	3	< 15	Project-based	+	+
Blowfly development *	INV-T-011	3	< 2	32'000	+++	++++
Flea development	INV-T-027	3	< 2	1'000	+	++++
Sea lice copepodite immersion	INV-T-016	3	< 2	10'000	+++	+
Tick adult immersion	INV-T-028	3	< 2	10'000	+++	+
Dust acarian mixed population	INV-T-032	3	< 2	Project-based	+	++
Flea oral development	INV-T-035	3	< 15	10'000	+	+
Gastrointestinal nematodes larval development	INV-T-005	3	< 2	100'000	++++	++
F. hepatica adult immersion	INV-T-004	3	< 15	500	+	++
Gastrointestinal nematodes L ₃ immersion	INV-T-006	3	< 2	On request	++++	++
Gastrointestinal nematodes adult immersion	INV-T-041	3	< 15	On request	+	+
Migration trap assay	INV-T-031	3	< 2	100'000	++	++
C. elegans development *	INV-T-001	3	< 2	> 100'000	++++	+++
Zebrafish development	INV-T-003	3	< 2	10'000	++	++
Xenopus oocytes, agonist *	INV-T-502	3	< 1	5'000	++	++
Xenopus oocytes, antagonist *	INV-T-503	3	< 1	5'000	++	++
Xenopus oocytes, PAM/NAM *	INV-T-504	3	< 1	5'000	++	++
Xenopus oocytes, 123 *	INV-T-505	3	< 1	5'000	++	++
Xenopus oocytes, IVC *	INV-T-506	3	< 1	5'000	++	++
Xenopus oocytes, custom *	INV-T-507	3	< 1	5'000	++	++
Microtubulin polymerization	INV-T-023	2	< 1	> 50'000	+++	+
Acetylcholine esterase inhibition	INV-T-034	2	< 1	> 50'000	+++	+


Animal Health screening cascade proposal

Repellency assays - cascade proposal

Motility Trap Assay - flowchart

List of available or under cloning* receptors

Category	Species	Ligand
		Acetylcholine*
	Taturanahan	GABA*
	Tetranychus urticae	Glutamate*
		Glycine*
	Manuac danturatar	Acetylcholine*
	Varroa destructor	Glutamate*
		Acetylcholine*
	Ctenocephalides felis	GABA
Arthropods		Glutamate
		Acetylcholine
	Lepeophtheirus salmonis	GABA
		Glutamate
		Acetylcholine*
	Rhipicephalus microplus	GABA
		Glutamate
		Acetylcholine
		Octopamine
	Aedes aegypti	Tyramine
		Histamine
		Voltage-gated channel
		GABA
	Drosophila melanogaster	Phenylacetaldehyde
		Propionic acid
	Apis melifera	Acetylcholine*

List of available or under cloning* receptors

Category	Species	Ligand	
	Ascaris caninum	GABA	
		Acetylcholine*	
		Amine*	
		Ca ²⁺ and Voltage-gated	
	Dirofilaria immitis	GABA	
		Glutamate	
Nematodes		Glycine*	
		Serotonine	
		Acetylcholine	
	Haemonchus contortus	Betaine	
		GABA	
	Caenorhabditis elegans	Betaine	
	- Cachornabartis cicgans	Ca ²⁺ and Voltage-gated	
Vertebrates		Acetylcholine*	
		Ca ²⁺ and Voltage-gated	
	Canis lupus lupus	GABA	
	cams rapas rapas	Glycine*	
		Na ⁺ and Voltage-gated*	
		Serotonin*	
	Gallus gallus	Acetylcholine	
	Homo sapiens sapiens	Acetylcholine	
	Mus musculus	Acetylcholine	

Contacts

INVENesis Switzerland

Lucien Rufener, PhD

(Co-founder and CEO)
lucien.rufener@invenesis.com

Elodie Valazza Rufener

(Co-founder and CFO) elodie.valazza@invenesis.com

INVENesis Sàrl Rue de Neuchâtel 15A 2072 St-Blaise (NE) Switzerland

INVENesis France

Alexandre Vernudachi, PhD

(Managing director)
alexandre.vernudachi@invenesis.com

INVENesis France

c/o MBE2507 147 Avenue André Maginot 37100 Tours France

INVENesis Japan Desk

Ken Irie, PhD

(INVENesis external consultant) ken.irie@invenesis.com

INVENesis Japan Desk Ken Irie, PhD

Japan

References

The following references summarizes the contribution of INVENesis in academic and / or industrial research:

- Nicotinic acetylcholine receptors: Ex-vivo expression of functional, non-hybrid, heteropentameric receptors from a marine arthropod, Lepeophtheirus salmonis.
 Rufener L, Kaur K, Sarr A, Aaen SM, Horsberg TE. PLoS Pathog. 2020 Jul 27;16(7):e1008715.
- An electrophysiological characterization of naturally occurring tobacco alkaloids and their action on human α4β2 and α7 nicotinic acetylcholine receptors. Alijevic O, McHugh D, Rufener L, Mazurov A, Hoeng J, Peitsch M. Phytochemistry. 2020 Feb;170:112187.
- Antiparasitic properties of leaf extracts derived from selected *Nicotiana* species and *Nicotiana tabacum* varieties. Schorderet Weber S, Kaminski KP, Perret JL, Leroy P, Mazurov A, Peitsch MC, Ivanov NV, Hoeng J. Food Chem. Toxicol. 2019 Oct;132:110660.
- High level efficacy of lufenuron against sea lice (*Lepeophtheirus salmonis*) linked to rapid impact on moulting processes. Poley JD, Braden LM, Messmer AM, Igboeli OO, Whyte SK, Macdonald A, Rodriguez J, Gameiro M, Rufener L, Bouvier J, Wadowska DW, Koop BF, Hosking BC, Fast MD. Int. J. Parasitol. Drugs Drug Resist. 2018 Aug;8(2):174-188.
- Book chapter (in press): Discovery and development of new antifilarial drugs (*In vitro* assays). Rufener L, Vernudachi A, Kaminsky R, Duguet T.

Notes

DRUG DISCOVERY

FOR EVERYBODY

www.invenesis.com