

ASSAY CATALOGUE 2025

Version: 5.1 February 2025

Table of content

Who are we ?	3
Our Missions	4
Invenesis (Switzerland) and Invenesis France	6
Our labs	7
Main technical equipments	8
Assays	9
Assay throughput	12
Screening cascade proposal	14
List of receptors	15
Contacts	17
References	18

"Every brilliant experiment, like every great work of art, starts with an act of imagination."

Jonah Lehrer

Who are we?

Molecular biol. & electrophysiology Invenesis is led by a team of dedicated scientists with decades of experience in industrial R&D and a track record of successful drug discovery in a large pharmaceutical company.

Assays & parasite breeding

Stéphane Wohlhauser Laboratory technician

Gautier Pizzolon Laboratory technician

Coralie Belgrano Laboratory technician

Lea Schepis Laboratory technician Apprentice

Anouk Sarr Laboratory technician

Kevin Shoetan Laboratory technician Apprentice

Laura Chappuis, MSc Scientist

Yves Desaules Laboratory technician

Alexandre Vernudachi, PhD Managing Director

Elodie V. Rufener Co-founder. CFO

Thomas Duguet, PhD

CSO

Lucien Rufener, PhD Co-founder, CEO

Maxime Alessandri, PhD СТО

Our missions

Invenesis provides a comprehensive platform for studying the impact of active ingredients on specific targets, organs, and entire organisms. Our catalogue includes a range of **validated assays** that enable testing of small molecules and natural extracts (such as those obtained from HPLC extracts), many of which are **compatible with high-throughput screening (HTS) campaigns**. Our assays cover a diverse array of organisms, including nematodes, insects, acari, sea lice, and zebrafish. We also offer enzymatic and electrophysiological assays on *Xenopus laevis* oocytes, enabling functional testing of reconstituted ion-channels and transporters from both invertebrates and vertebrates. At Invenesis, **we strive to be your one-stop-shop for all your testing needs**.

 Organism-based assays: their key advantage rely on the measurement of phenotypes independently of molecular target assumptions. We developed a whole pipeline of assays to allow highthroughput with high value assays for hit identification, lead optimization as well as resistance evaluation. Active compounds in organism-based assays have not only to act on their targets but also have to cross biological barriers, resist metabolization and reach one or more targets causing an effect at the whole - organism level.

- Electrophysiology assays: represent our second main domain of activity. The *Xenopus* oocyte expression system allows to express **functional** ion-channels in the membrane of individual cells and measure their physiological function. We measure the effect of compounds on ligandgated ion-channels, voltage-gated ion-channels, GPCRs and transporters. Oocytes are injected with cDNA or cRNA encoding the receptor of interest using an automated injection platform (Roboinject). The effect of compounds on the heterologously expressed channels are recorded using an **automated** two electrodes voltage-clamp automate (HiClamp, Multichannelsystem). This system does not require months of cell culture: we can inject on a weekly basis and start measurements after 2-3 days of expression. We process automated protocols to detect agonism, antagonism, positive and negative modulators as well as silent agonists. Compounds can be preapplied or co-applied with the natural agonist or applied alone. As the oocyte is moved across wells, this method is **non-destructive**, and measurements of other cells can be performed in a unique sample. We can also measure the electrophysiological response of sensory organs in mosquitoes and ticks.
- Our confidentiality policy: we are committed to maintaining total confidentiality for our customers. To this end, we anonymize both our customers' company names and the compounds they submit to us. Additionally, we keep the entire billing process in-house and manage it directly through our CFO, Elodie Valazza Rufener, ensuring a fast and reliable accounting process. You can trust that we take your confidentiality seriously and will go to great lengths to protect your proprietary information throughout every step of the testing process.

Invenesis (Switzerland)

Established in St-Blaise on the Neuchâtel lake shore, Invenesis in Switzerland beneficiates from brand new state of the art laboratories with a total surface of 370m² (including 100m² of BSL2 labs) and 165m² of office space. Invenesis in Switzerland is in charge of performing all ectoparasite and electrophysiology-based assays. The company's headquarters are located there.

Invenesis France

Located on the INRAE research center in Nouzilly (France), our sister company Invenesis France takes advantage of both a facilitated access to endoparasitic species of veterinary importance and of years of collaboration with top level scientists in parasitology. Invenesis France is in charge of performing all our endoparasite-based assays and our french customers can benefit from the "Crédit impôt recherche", a fiscal-based cost reduction initiative.

Our labs

(up to 384-well plates)

BSL2 lab space:

- Parasite breeding
- Assay recording
- R&D

Main technical equipments

Chemical storage cabinets

TECAN® 8 tips (serial dilutions)

Automatized liquid handling

TECAN[®] 96 / 384 tips (test plate prep)

Electrophysiology platform

Molecular biology (DNA / RNA / protein equipment)

Roboinject (X. laevis oocyte cRNA injection)

HiClamp (X. laevis oocyte TEVC)

PCR / qPCR (Roche Lightcycler® 480 II)

Microscopy (Leica DMI6000B)

Other technical platforms

3D-printing (R&D)

- - Incubators
 - Centrifuges
 - Safety cabinets
 - Fume hoods
 - -80°C freezers

BSL1 / BSL2 (standard equipment)

Ectoparasites / vectors

• Oral	 INV-T-009: Flea oral INV-T-012: Blowfly adult oral INV-T-020: Tick adult oral INV-T-049: Tick adult feeding NEW INV-T-015: Fly adult oral
• Tarsal	 INV-T-010: Flea tarsal INV-T-017: Tick egg-to-larvae tarsal INV-T-042: Tick larvae tarsal INV-T-018: Tick nymph tarsal INV-T-019: Tick adult tarsal INV-T-002: Fly adult tarsal INV-T-033: Mosquito adult contact INV-T-039: Whitefly adult contact
• Repellency	 INV-T-022: Tick larvae repellent INV-T-021: Tick nymph vertical repellent INV-T-029: Tick adult vertical repellent INV-T-048: Tick adult repellent (tracked) INV-T-025: Mosquito adult repellent (1 warm body) INV-T-030: Mosquito adult repellent (2 warm bodies) INV-T-043: Flea adult repellent INV-T-040: Whitefly adult repellent
- Development	 INV-T-011: Blowfly development INV-T-027: Flea development
Immersion	 INV-T-016: Sea lice copepodites immersion INV-T-028: Tick adult immersion
-• Sterilization	 INV-T-032: Dust acarian mixed population INV-T-035: Flea oral development
• Injection	INV-T-047: Tick adult injection

Endoparasites

Development	•	INV-T-005: Gastrointestinal nematodes larval
		development (eaa to L ₂)

- INV-T-004: Fasciola hepatica adult immersion
- INV-T-006: Gastrointestinal nematodes L₃ immersion

Immersion

- INV-T-031: Migration trap assay (MTA)
 INV-T-041: Nematode adult immersion
- INV-T-044: Filarial nematodes L1 immersion
- INV-T-045: Filarial nematodes L3 immersion

Model organisms

Development

- INV-T-OO1: Caenorhabditis elegans development (egg to L₄)
- **INV-T-003**: Zebrafish development (egg to 72h embryo)

Xenopus

oocytes

Electrophysiology

- INV-T-502: Xenopus oocytes, agonist protocol
- INV-T-503: Xenopus oocytes, antagonist protocol
- INV-T-504: Xenopus oocytes, PAM or NAM protocol
- INV-T-505: Xenopus oocytes, 123 protocol
- INV-T-506: Xenopus oocytes, IVC protocol
- INV-T-507: Xenopus oocytes, custom protocol

- Enzymes
- **INV-T-023**: Microtubulin polymerization
- INV-T-034: Acetylcholine esterase inhibition

Assay throughput (1/2)

Assay	Test ID	Rep/DTP	Compound (mg)	Max datapoint / year	Assay throughput	Price discount (HTS)
Flea oral *	INV-T-009	3	< 2	32′000	+++	++++
Blowfly adult oral	INV-T-012	3	< 2	Project-based	+	++
Fly adult oral	INV-T-015	3	< 15	160	+	+
Tick adult oral	INV-T-020	2	< 15	160	+	+
Tick adult feeding	INV-T-049	3	< 5	160	+	+
Flea tarsal *	INV-T-010	3	< 2	32'000	+++	++++
Fly adult tarsal	INV-T-002	3	< 2	160	+	++
Tick egg-to-larvae tarsal	INV-T-017	3	< 2	> 100'000	++++	++++
Tick larvae tarsal	INV-T-042	3	< 2	32'000	+++	+++
Tick nymph tarsal	INV-T-018	3	< 2	32'000	+++	++
Tick adult tarsal	INV-T-019	3	< 2	32′000	+++	+
Mosquito adult contact	INV-T-033	3	< 15	Project-based	+	+
Whitefly adult contact	INV-T-039	3	< 15	Project-based	+	+
Whitefly adult repellent	INV-T-040	3	< 15	Project-based	+	+
Tick larvae repellent	INV-T-022	3	< 2	Project-based	++	++
Tick nymph vertical repellent	INV-T-021	3	< 15	Project-based	+	+
Tick adult vertical repellent	INV-T-029	3	< 15	Project-based	+	+
Tick adult repellent (tracked)	INV-T-048	3	< 15	Project-based	+	+
Mosquito adult repellent 1 *	INV-T-025	3	< 2	Project-based	+	+
Mosquito adult repellent 2	INV-T-030	3	< 2	Project-based	+	+
Flea adult repellent	INV-T-043	3	< 15	Project-based	++	+++
Blowfly development *	INV-T-011	3	< 2	32'000	+++	++++
Flea development	INV-T-027	3	< 2	1′000	+	++++
Sea lice copepodite immersion	INV-T-016	3	< 2	10′000	+++	+
Tick adult immersion	INV-T-028	3	< 2	10′000	+++	+
Dust acarian mixed population	INV-T-032	3	< 2	Project-based	+	++
Flea oral development	INV-T-035	3	< 15	10′000	+	+
Tick adult injection	INV-T-047	3	< 15	Project-based	+	+

* Assays performed on a weekly basis

Assay throughput (2/2)

Assay	Test ID	Rep/DTP	Compound (mg)	Max datapoint / year	Assay throughput	Price discount (HTS)
Gastrointestinal nematodes larval development	INV-T-005	3	< 2	100′000	++++	++
F. hepatica adult immersion	INV-T-004	3	< 15	500	+	++
Gastrointestinal nematodes ${\rm L}_{\rm 3}$ immersion	INV-T-006	3	< 2	On request	++++	++
Nematode adult immersion	INV-T-041	3	< 10	On request	+	+
Filarial nematodes L1 immersion	INV-T-044	3	< 2	On rquest	++++	+++
Filarial nematodes L3 immersion	INV-T-045	3	< 2	On request	++	+
Migration trap assay	INV-T-031	3	< 2	100'000	++	++
C. elegans development *	INV-T-001	3	< 2	> 100'000	++++	+++
Zebrafish development	INV-T-003	3	< 2	10'000	++	++
<i>Xenopus</i> oocytes, agonist *	INV-T-502	3	< 1	5'000	++	++
Xenopus oocytes, antagonist *	INV-T-503	3	< 1	5'000	++	++
<i>Xenopus</i> oocytes, PAM/NAM *	INV-T-504	3	< 1	5'000	++	++
<i>Xenopus</i> oocytes, 123 *	INV-T-505	3	< 1	5′000	++	++
<i>Xenopus</i> oocytes, IVC *	INV-T-506	3	< 1	5′000	++	++
<i>Xenopus</i> oocytes, custom *	INV-T-507	3	< 1	5'000	++	++
Microtubulin polymerization	INV-T-023	2	< 1	> 50'000	+++	+
Acetylcholine esterase inhibition	INV-T-034	2	< 1	> 50'000	+++	+

* Assays performed on a weekly basis

Animal Health screening cascade proposal

Repellency assays - cascade proposal

Motility Trap Assay - flowchart

List of available or under cloning^{*} receptors

Category	Species	Ligand
		Acetylcholine*
		GABA*
	l etranychus urticae	Glutamate*
		Glycine*
	Vacan doctoretos	Acetylcholine*
	Varroa destructor	Glutamate*
		Acetylcholine*
	Ctenocephalides felis	GABA
		Glutamate
		Acetylcholine
	Lepeophtheirus salmonis	GABA
Acthropode		Glutamate
Artinopous		Acetylcholine*
	Rhipicephalus microplus	GABA
		Glutamate
		Acetylcholine
		Octopamine
	Aedes aegypti	Tyramine
		Histamine
		Voltage-gated channel
		GABA
	Drosophila melanogaster	Phenylacetaldehyde
		Propionic acid
	Apis melifera	Acetylcholine*

List of available or under cloning* receptors

Category	Species Ligand	
	Ancylostoma caninum	GABA
		Acetylcholine*
		Amine*
		Ca²⁺ and Voltage-gated
	Dirofilaria immitis	GABA
		Glutamate
Nematodes		Glycine*
		Serotonine
		Acetylcholine
	Haemonchus contortus	Betaine
		GABA
	Caenorhabditis elenans	Betaine
	cochonhoboltis cicyons	Ca ²⁺ and Voltage-gated
		Acetylcholine*
		Ca ²⁺ and Voltage-gated
	Canis luous luous	GABA
		Glycine*
Vertebrates		Na⁺ and Voltage-gated*
		Serotonin*
	Gallus gallus	Acetylcholine
	Homo sapiens sapiens	Acetylcholine
	Mus musculus	Acetylcholine

Contacts

Invenesis (Switzerland)

Lucien Rufener, PhD (Co-founder and CEO) lucien.rufener@invenesis.com

Elodie Valazza Rufener

(Co-founder and CFO) elodie.valazza@invenesis.com

Invenesis France

Alexandre Vernudachi, PhD

(Managing director) alexandre.vernudachi@invenesis.com

Invenesis Sàrl

Rue de Neuchâtel 15A 2072 St-Blaise (NE) Switzerland

Invenesis France

c/o MBE2507 147 Avenue André Maginot 37100 Tours France

Invenesis Japan Desk

Ken Irie, PhD (Invenesis external consultant) ken.irie@invenesis.com **Invenesis Japan Desk** Ken Irie, PhD Japan

www.Invenesis.com

References

The following references summarizes the contribution of Invenesis in academic and / or industrial research:

- Nicotinic acetylcholine receptors: *Ex-vivo* expression of functional, non-hybrid, heteropentameric receptors from a marine arthropod, *Lepeophtheirus salmonis*. Rufener L, Kaur K, Sarr A, Aaen SM, Horsberg TE. PLoS Pathog. 2020 Jul 27;16(7):e1008715.
- An electrophysiological characterization of naturally occurring tobacco alkaloids and their action on human $\alpha 4\beta 2$ and $\alpha 7$ nicotinic acetylcholine receptors. Alijevic O, McHugh D, Rufener L, Mazurov A, Hoeng J, Peitsch M. Phytochemistry. 2020 Feb;170:112187.
- Antiparasitic properties of leaf extracts derived from selected *Nicotiana* species and *Nicotiana tabacum* varieties. Schorderet Weber S, Kaminski KP, Perret JL, Leroy P, Mazurov A, Peitsch MC, Ivanov NV, Hoeng J. Food Chem. Toxicol. 2019 Oct;132:110660.
- High level efficacy of lufenuron against sea lice (*Lepeophtheirus salmonis*) linked to rapid impact on moulting processes. Poley JD, Braden LM, Messmer AM, Igboeli OO, Whyte SK, Macdonald A, Rodriguez J, Gameiro M, Rufener L, Bouvier J, Wadowska DW, Koop BF, Hosking BC, Fast MD. Int. J. Parasitol. Drugs Drug Resist. 2018 Aug;8(2):174-188.
- Book chapter: Discovery and development of new antifilarial drugs (*In vitro* assays). Rufener L, Vernudachi A, Kaminsky R, Duguet T.
- Nemacol is a small molecule inhibitor of *C. elegans* vesicular acetylcholine transporter with anthelmintic potential. Harrington S, Pyche J, Burns AR, Spalholz T, Ryan KT, Baker RJ, Ching J, Rufener L, Lautens M, Kulke D, Vernudachi A, Zamanian M, Deuther-Conrad W, Brust P, & Roy PJ. Nature Com. 2023 - 14, 1816

Notes

This catalogue and its content shall not be transmitted outside the sustamos's organisation

DRUG DISCOVERY

FOR EVERYBODY

www.invenesis.com